
Brownian Transport Brownian Transport 
at the at the NanoNano--scalesscales

• Brownian transport in confined geometries 
subjected to external fields of force

• Brownian transport in inhomogeneous media, p g
ie, with position dependent diffusion
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Part 1: Part 1: Brownian Transport in Brownian Transport in 
Narrow ChannelsNarrow Channels

• bio-systems, porous media

• artificial submicron devices

• noise rectification mechanisms

Burada et al, ChemPhysChem 10 (2009) 45



Entropic channelsEntropic channels
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ξ(t): Gaussian, ‹ξι(t)›=0
‹ξi(t)ξj(0)›=2δijδ(t)

w(x): channel radius/profile

overdamped, or Smoluchowski approximation: infinite damping (or zero
mass) as in most biological physics systems

no analytical methods to describe transport in a generic profile w(x);
approximate techniques are needed
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• dimension reduction techniques: from

3D, 2D to 1D effective transport equations
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3D, 2D to 1D effective transport equations xw )(

A( )
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A(x)σ(x)  =2w(x)    in 2D 

=πw(x)2 in 3D    
channel cross 

section
narrow pores, wmin<<wmax

Zwanzig, JCP, 1992

Zwanzig-Fick-Jacobs (ZFJ) scheme

D( ) D /[1+ ’( )2]                  1/2 (i  3D) 

• technical difficulty: an uncontrolled expansion

D(x)=D0/[1+w’(x)2]α,                α =1/2 (in 3D) 

=1/3 (in 2D)
Reguera & Rubi, 
PRE64, 2001



ZFJ →1D Langevin equation (LE)
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μ(F) → 1, for F → ∞ theory fails Costantini, FM, EPL 48, 1999
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D(F) goes through a depinning peakD(F) goes through a depinning peak,
and D(F) → D0 for F → ∞



validityvalidity

1. narrow pores

2. fast transverse re-equilibration
τy << max{τx,τF}

2 / d ffτy =w2
max/2D0    transverse diffusion

τx = L2/2D0 longitudinal diffusion

τF=L/F             drift P(δx) ≈ F/D0 exp(-Fδx/D0)τF=L/F             drift

despite much effort,

P(δx)  F/D0 exp( Fδx/D0)

3. For smooth channel

w’(x) << min{1,D0/FL}

 t i t f  l  d i

validity of ZFJ scheme 

remains very limitedvery limited
more stringent for large drives

Laachi et al, EPL 80, 2007



Random walker modelRandom walker model

alternative approach based on discretizing x(t) with steps of L=xL

h  i l  i  d i    f   i   i  h  MFETthe particle is trapped in a compartment for a time τ1; τ1 is the MFET
through either opening

Assume F=0: the diffusion constant is then  
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(B)   2D direct calculation (Holcman et al, 2011)
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Geometric effectsGeometric effects
Brownian transport can be studied under more general conditions:

narrow pores, only
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ZFJ scheme fails even 

at F=0 as w’(x) diverges 
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interest not conceptual only



applicationsapplicationsapplicationsapplications

channel networks in natural andchannel networks in natural and

artificial porous media (zeolites, 

membranes, etc)

particle ratcheting in 2D and 3D 

channels is more effective for sharp

boundaries (eg. magnetic vortices in 

type-II superconductors)

Wambaugh et al, PRL 83, 1999



Example: 2D narrow septateseptate channels
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Inertia effectsInertia effects

• large damping is the rule eg in biological systems → bulk diffusion 
is overdamped …
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rr&r&&r ++−= ξ(t): Gaussian, ‹ξι(t)›=0
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‹ξi(t)ξj(0)›=2δijδ(t)

• …under certain conditions (Smoluchowski approximation), ie
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• conditions to be specialized for constrained geometries

Δl Δl

conditions to be specialized for constrained geometries

Δ<<Tl Δ<<Fl

Tl Δ Δ

2/ γFlF ≡

Δ≡>> /kTTγγ Δ≡>> /FFγγ

… which surely fail in the limit Δ → 0



• inertia suppresses transport

(F) decays with Fμ(F) decays with F

D(F) increases with F

• measurable effect, 

eg in colloidal suspensions

large Flow F

Ghosh et al,

EPL 2012



Part 2: Part 2: Brownian Transport and Brownian Transport and 
StateState--Dependent Diffusion Dependent Diffusion 

• how can we extract useful work from the 
environment (without violating the II law of 
thermodynamics)? → ratchet mechanismsthermodynamics)? → ratchet mechanisms
P. Hänggi & FM, Rev Mod Phys, 81 (2009) 387

• noise rectification mechanisms in the absence of 
external drives (passive devices)

}• inhomogeneous environments }NanoPower



Büttiker’sBüttiker’s modelmodel

consider an overdamped particle on 
a 1D periodic substrate V(x+L)=V(x)

let the diffusivity D of the substrate 
also be periodically modulated with also be periodically modulated with 
period L

ith L i  tiwith Langevin equation

)()()( txDxVx ξo& +′−=
ξ(t): Gaussian, ‹ξι(t)›=0

‹ξi(t)ξj(0)›=2δijδ(t)

and FPE  (Ito scheme)



on solving the FPE for periodic b.c. Pst(x+L)=Pst(x)

dyyVxF
x

∫
′

=
)()(with y

yD∫
0

)(
)(with

rectification condition, j∫0

one can play with V(x), D(x) 
profiles and relative phaseprofiles and relative phase.



Extension to narrow channelsExtension to narrow channels
consider an overdamped particle 
narrow channel w(x+L)=w(x)

let the diffusivity D of the substrate 
also be periodically modulated with also be periodically modulated with 
period nL, TL=TR

FJZ approach assuming Ito schemepp g

)(/)()()(')()( xwxwxDxAxDxV ′−=→′ hence

no rectification!



Meaning of                   Meaning of                   )()( txD ξo

• during a time interval Δt, t→t+Δt, the particle moves from x=x(t) to         
x(t+Δt)=x±Δx with Δx2=2DΔt;x(t+Δt) x±Δx with Δx 2DΔt;

• what if D=D(x)? what is the appropriate choice for D in Δx2=2DΔt?

• D→ D(x+αΔx) the choice 0≤α≤1 depending on the underlying dynamics( ) p g y g y

Ito (α = 0) vs Stratonovitch (α = 1/2) dilemma  see standard textbooks;Ito (α = 0) vs Stratonovitch (α = 1/2) dilemma, see standard textbooks;

answer follows from a more detailed microscopic modeling of the process
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α dependent drift: on expanding in leading (stochastic) order of Δt
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for a generic Pst(x) and 0≤α≤1   
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two simple cases for dD(x)/dx=ΔD/L constant 

seeminglyseemingly

counterintuitivecounterintuitive

case α = 0: (Ito) case α = 1: (anti-Ito)
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Artificial materialsArtificial materials

consider a graded 2D lattice strip of length         
L R  il  d t   t i  h l

cold L hot

L>>R; easily mapped to an entropic channel

• R and Δ increase linearly with x,                  

… ……

TL TRR and Δ increase linearly with x,                  
R(x) → κR, Δ(x) →κΔ, with κ2(x)=1+δ(x/L)

• Δ/R and the free space fraction 

x

constant222 )/1)(4/(1/ LL xxR Δ−−== ππφ

• hence an effective x-dependent T (i e  D): T(x)=T κ2(x)hence an effective x dependent T (i.e. D): T(x) T κ (x)

• and a constant Pst(x) ∂ φ

→ FJZ channel: 1D LE with linear D(x), anti-Ito scheme α=1



a new class of Brownian rectifiers: 

zero current (isothermal), net (measurable) drift 

generalization for any choice of α: choosing κ(x) and Δ/R(x) we can 
tune the x-dendence of φ = φ(Δ/R)  and D – recall that D=xL

2/4τ1 with
τ known function of the local lattice parametersτ1 known function of the local lattice parameters

eg:  D(x)Pst(x) = const  → α=0 (Ito scheme)

Büttiker rectifier: 

zero current and zero drift 



ConclusionsConclusions

Part 1
• 2D and 3D narrow channels show geometric and inertial
properties unaccounted for by Zwanzig-Fick-Jacobs scheme 

 h ld b  d  t  i t  h d d i• more should be done to incorporate hydrodynamics

P t 2Part 2
• graded (ordered viz. disordered) structures are modeled 
by x-dependent diffusivityy p y

• different transport transport


